
MULTISTYLE: Characterizing Multiplayer Cooperative Gameplay by
Incorporating Distinct Player Playstyles in a Multi-Agent Planner

Eric W. Lang1, R. Michael Young1,2

1School of Computing, University of Utah, 201 Presidents’ Circle, Salt Lake City, UT 84112
2Entertainment Arts and Engineering Program, University of Utah, 201 Presidents’ Circle, Salt Lake City, UT 84112

ewlang@cs.utah.edu, young@eae.utah.edu

Abstract
This paper presents MULTISTYLE, a multi-agent central-
ized heuristic search planner that incorporates distinct agent
playstyles to generate solution plans where characters express
individual preferences while cooperating to reach a goal. We
include algorithmic details, an example domain, and multiple
different solution plans generated with unique agent playstyle
sets. We discuss our intent to incorporate this planner in a
tool for game level designers to help them anticipate and un-
derstand how teams of players with distinct playstyles may
play through their levels. Ultimately, MULTISTYLE generates
solution plans with a novel and increased expressive range
by attempting to satisfy sets of action and proposition prefer-
ences for each agent.

Introduction
When listening to a group of players playing a video game,
it’s common to hear them express distinct desires: ”I want to
build a base!”, ”I want to kill monsters!”, ”I want to solve
puzzles!”, or ”I want to go to new places!”. In any given
video game, players may uniquely prefer doing some activ-
ities over others, as each player simply has fun doing dif-
ferent things. The notion of distinct player types is well-
known: Bartle’s player types (Bartle 1996) and the types
defined in Robin’s Laws of Good Game Mastering (Laws
2002) are commonly referenced, and research has been pub-
lished that classifies players as well (Bateman, Lowenhaupt,
and Nacke 2011; Kallio, Mäyrä, and Kaipainen 2011; Tseng
2011; Hamari and Tuunanen 2014; Vahlo et al. 2017; Mora
et al. 2019). All of these classifications are broadly based on
players having different preferences when it comes to their
game experience.

We refer to what a specific player prefers to do in a
game as a player’s playstyle. Designers often attempt to sat-
isfy various playstyles when designing single-player levels,
producing agency-rich gameplay where players are free to
choose to do what they want to do within the game. Ideally,
every type of player in the designer’s audience can enjoy the
game how they want to enjoy it. However, in a multiplayer
level, satisfying multiple playstyles simultaneously can be
challenging, as the designer needs to consider how groups
of players may play through a level when each player in the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

group has a distinct playstyle. This quickly becomes an un-
wieldy combinatoric issue: what if a group has one fighter,
one builder, and one gatherer? What if a group only has three
fighters? What if the group has two explorers and a builder?
Quickly enumerating the types of groups and understanding
the experience each group will have can be challenging for
a human designer even in fairly simple domains.

In this paper, we introduce a playstyle-aware planner
named MULTISTYLE, aimed at solving cooperative multi-
agent planning problems to indicate what players with dif-
ferent playstyles might do as they work together to com-
plete a game level. Each agent has a playstyle which is com-
posed of action preferences (what the agent wants to do) and
proposition preferences (what properties of the world the
agent prefers). The planner incorporates this information in
its heuristic and produces solutions biased toward each indi-
vidual agent satisfying its specific playstyle. These solution
plans can vary significantly based on the playstyles given to
each agent, meaning the planner can express distinct agent
behavior. In order for a domain author to inspect multiple
possible approaches for agents to reach the goal, they need
only modify the playstyle parameters for each agent.

MULTISTYLE is unique in that typical preference-based
planners only consider a single preference set that solely
holds preference information about the world state (e.g. as
defined in PDDL3’s preferences (Gerevini and Long 2005)).
These preferences are intended to give the user control over
what sort of solution the planner will produce. The approach
of giving each agent its own preferences with the intent of
having agents express their individuality is entirely novel,
and by using a method to incorporate both action and propo-
sition preferences instead of solely proposition preferences,
resulting solution plans can show idiosyncratic agent behav-
ior.

This paper includes a description of the planner, how the
single-agent preference-based heuristic RPGPREF (Lang
and Young 2022) was modified to work in a multi-agent con-
text, and an example domain with multiple solution plans
illuminating how the planner has the power to generate
playstyle-conforming paths to goal. We provide a brief dis-
cussion of the domain and associated playthroughs to give a
characterization of the increased expressive range provided
by the planner. MULTISTYLE can generate multiple differ-
ent playthroughs from the same planning problem for teams

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

97

of cooperating agents who each have distinct playstyles. We
discuss using that capability for aiding game level design-
ers by providing them with information about the possible
ways players with varying playstyles may play through their
levels.

Related Work
There are three broad categories of adjacent work for this
planner: preference-based planners, multi-agent planners,
and planners that can express character traits (broadly re-
ferred to here as ”narrative planners”). This planner sits
somewhere between the capabilities of all three types of
work and each subsection will discuss how this paper is in-
fluenced by these fields.

Preference-Based Planners
From a purely conceptual level, preference-based planners
are the nearest field to the work presented in this paper,
as both preference-based planners and this paper discuss
planners which use additions to a typical planning prob-
lem to guide the generation of a solution plan toward poten-
tially longer solutions that instead try to fulfill added crite-
ria. However, current preference-based planners are single-
agent. Torreño et al. (2017) state ”Preference-based MAP is
an unstudied field that can be interpreted as a middle ground
between cooperative and self-interested MAP, since it in-
volves a set of rational agents that work together toward a
common goal while having their own preferences concern-
ing the properties of the solution plan.” In the years since
that paper was written, the field has remained unstudied.

In addition, preference-based planners frequently use
PDDL3’s preferences (Gerevini and Long 2005) which only
allow for proposition preferences (Baier, Bacchus, and McIl-
raith 2009; Coles and Coles 2011). This sole focus on propo-
sition preferences is powerful in that the user can guide the
solution toward certain world states, but the user has no say
in what actions the solution plan should use to reach those
world states. One exception to this is RPGPREF (Lang and
Young 2022), a heuristic that was developed specifically to
incorporate action preferences alongside proposition prefer-
ences. Our approach in this paper uses a modified version of
RPGPREF to incorporate multiple distinct agent playstyles.

Multi-Agent Planners
Multi-agent planners describe a broad field with many dif-
ferent algorithmic approaches. Recent work focuses on var-
ious subfields such as distributed planning, agents using re-
sources, and privacy between agents (Nissim and Brafman
2014; Torreno, Onaindia, and Sapena 2014; Maliah, Shani,
and Stern 2017; Gerevini et al. 2019; Ye et al. 2020). Our
approach in this planner is centralized, agents have no spe-
cific resources or capabilities, and the planner is allowed to
be omniscient with no enforced privacy between agents.

This dramatically simplifies the planning process, but this
simplification is because of the intended use of our plan-
ner. While some multi-agent planners are intended to solve
problems where, for example, corporations must work to-
gether without exposing their internal operations, the class

of problems MULTISTYLE is intended to solve assumes that
cooperating players within a video game can freely commu-
nicate and be observed without worry of exposing valuable
information.

Instead, MULTISTYLE has the novel capability of consid-
ering agent preferences in a multi-agent planning process.
By making the planner centralized, we remove the ability
to consider privacy between agents, but we gain significant
capabilities in choosing which agent performs which action.
Because our planner is intended to express agent playstyle
within its solutions, this ability to consider all agents simul-
taneously is invaluable as it allows the planner to directly
compare between all agents’ playstyles when considering
the next step for the plan.

Narrative Planners
In narrative planning, the objective of the planner is to gen-
erate a solution plan for a planning problem which can then
be used as a story or otherwise incorporated into interactive
media such as video games. Significant work has been done
in narrative planning to incorporate both authorial goals as
well as believable agent behavior.

Authorial goals can be thought of as a requirement for
certain states to hold true in the world at certain points (e.g.
Darth Vader and Luke must only fight once) which are sim-
ilar to user preferences for the solution plan. Just like as
mentioned in preference-based planning, approaches using
this feature differ from our approach in that MULTISTYLE
uses a preference set for each agent, not for the entire so-
lution plan. In addition, MULTISTYLE attempts to satisfy
playstyles but will still find a solution plan even if it can
not wholly satisfy all agent playstyles, while these narrative
planning approaches often should explicitly fail when they
can’t meet the condition set by the user.

Most of the work centered around believable agent behav-
ior that affects individual character behavior in the narrative
planning space incorporates two features: characters with
differing individual goals and characters who have differing
beliefs about the world (Riedl and Young 2010; Teutenberg
and Porteous 2013; Ware and Young 2015; Young 2017;
Ware and Siler 2021; Shirvani, Ware, and Baker 2022). Ap-
proaches where characters have differing goals exist in nar-
rative planning, as often characters may not be ”on the same
side” and will pursue opposing goals or will simply have
their own intentions. While characters with differing indi-
vidual goals do behave differently to pursue their goals,
these approaches do not consider what actions a charac-
ter should choose to pursue their individual goals. Since
MULTISTYLE is intended for cooperating agents who are
all pursuing the same goal, we required an approach where
agents could express distinct playstyles without having dis-
tinct goals.

Planners which incorporate character belief systems to
enhance character believability do generate solution plans
where characters take actions based on their belief state, so
characters may behave differently from one another. How-
ever, characters who perform one action over another be-
cause they believe the preconditions of only one action are
met aren’t expressing preference, as they are only choosing

98

the action which their beliefs allow them to execute. When
the planner is choosing between two actions which the char-
acter believes are both executable, the character will not be
guided toward an action that best suits the character, as the
character has no preferences.

One narrative planner that does incorporate action choice
is Mask (Bahamón and Young 2017). Characters in Mask
have personality traits that determine what actions they
choose when those actions affect other characters. However,
characters do not specifically choose actions based on a pref-
erence toward or against the action itself. On the other hand,
MULTISTYLE is designed such that agents pursue their own
action and proposition preferences when the planner adds
steps to the solution plan.

Planner
MULTISTYLE is a centralized planner that generates a single
plan for multiple executing agents, so it shares many features
of a single-agent planner. The candidate actions of each step
of the search process are all actions that could possibly be
executed in the world rather than only the actions that a sin-
gle agent could execute. The planner uses forward heuristic
search, constructing a solution plan by starting at the initial
state in the problem definition and adding one step at a time
until it reaches the goal state. To select which step to add to
the plan next, it performs a heuristic evaluation of each po-
tential next step. The heuristic function attempts to guide the
planner toward the shortest playstyle-conforming path to the
goal, though because the heuristic only provides an approx-
imation, there is no guarantee that the planner’s output will
be the shortest playstyle-conforming solution plan. Specific
information about MULTISTYLE’s heuristic can be found in
the Heuristic section below.

Definitions
The novel component of the problem definition for the plan-
ner is each agent’s distinct Playstyle Information set:

Definition 1 (Agent Playstyle Information) P is the set of
propositions in the domain and A is the set of actions in
the domain. An agent ϕ’s playstyle information Lϕ is a
dictionary of key-value pairs {(x → xv) ∈ Lϕ} where
Lϕ(x) = xv . x is either a proposition (x ∈ P) or an ac-
tion (x ∈ A) and xv ∈ R is the corresponding preference
value. For propositions (x ∈ P), xv represents agent ϕ’s de-
sire (xv > 0) or aversion (xv < 0) to the atom x being held
in the world. For actions (x ∈ A), xv represents agent phi’s
desire (xv > 0) or aversion (xv < 0) to perform x.

The planner uses a multi-agent planning problem with
playstyles (PMA-STRIPS). This definition is based on MA-
STRIPS (Brafman and Domshlak 2013):

Definition 2 (PMA-STRIPS Problem) A PMA-STRIPS
problem is a septuple Π = ⟨P, I,G,Φ, A,L, f⟩. P is a
finite set of t atoms {pj}tj=1, I ⊂ P encodes the ini-
tial state of the system, and G ⊂ P encodes the goal
condition. Φ is a set of n agents {ϕi}ni=1. A is a set of
available actions {ak}ok=1. Every action a ∈ A is a tuple
⟨ϕi, PRE(a), ADD(a), DEL(a)⟩, where ϕi is the executor of

the action and PRE(a), ADD(a), and DEL(a) are all subsets
of P . L is a set of playstyles {Li}ni=1, where Li is the
playstyle information for agent ϕi. f ∈ N indicates how far
past the fixed point the heuristic should extend the relaxed
plan graph.

The primary difference between a MA-STRIPS and a
PMA-STRIPS problem is the addition of L, the playstyle set,
and f , the heuristic extension value. The value f is further
discussed in the Heuristic section. The playstyle set L allows
every agent to have fixed preferences for or against each ac-
tion the agent could possibly execute and each atomic propo-
sition able to be held in the domain. These preference values
are numeric and can be thought of as weights: the higher the
preference value, the more the agent prefers the proposition
or action, and the lower the preference value, the more the
agent dislikes the proposition or action.

Note that there is no addition to the goal condition or any
indication of any constraint based on the playstyle. PMA-
STRIPS problems should be solved the same way as MA-
STRIPS if every item in each agents’ playstyle is zero. In
that way, agents with sparse preferences will only exhibit
different behavior when those preferences are relevant but
will otherwise proceed on the shortest path to goal. This is
because of a fundamental assumption that the agent will per-
form actions to pursue their goal and, in a case where the
preference of all paths to the goal are equal, the agent will
pick the shortest path to reach their goal. The problem itself
reflects this by including playstyles for the planning system
but not requiring the fulfilment of any specific preference.
Instead, the planner is capable of generating metrics on how
well agents can express their playstyles in a given domain
rather than just whether or not they are capable of such ex-
pression.

The planner aims to generate a typical solution plan. The
definition is included here for completeness, but it is un-
changed from a typical solution plan definition:
Definition 3 (Solution Plan) The solution to a PMA-
STRIPS problem is S = {al}xl=1 where PRE(a1) ∈ I and
applying a1 results in an intermediate state N1 = {I ∪
ADD(a1)} \ DEL(a1) where PRE(a2) ∈ N1. In turn, ap-
plying a2 to N1 results in an intermediate state N2 where
PRE(a3) ∈ N2 and so forth until ax. The state Nx produced
by applying ax to Nx−1 contains the goal: G ⊂ Nx.

This solution plan definition contains no preference infor-
mation and has no condition on playstyles being satisfied in
order for the problem to be solved, as the playstyles are not
hard constraints but instead are meant to guide the planner.

Description
In addition to its basic planning functionality, MULTI-
STYLE uses action pruning, an approach used in other RPG-
based heuristic planners such as FastForward (Hoffmann
and Nebel 2001). When the heuristic evaluates a step, it
generates a list of helpful actions: actions that the heuristic
suggests the planner should consider to reach the goal. In-
corporating action pruning in a planner means that, should
the evaluated step be added, the planner should consider the
helpful actions identified by the evaluation for the next step

99

prior to considering other actions. Normally, this is used to
increase the efficiency of the planner, as the planner needs to
evaluate fewer potential steps. In MULTISTYLE, however,
action pruning is primarily used to make the planner con-
form to steps the heuristic identified as likely to be on a path
that uses high playstyle value actions and propositions in
order to reach the goal. This action pruning driven by the
heuristic is what ultimately makes MULTISTYLE consider
playstyle, as the planner itself does not attempt to evaluate
playstyle for potential steps.

The planner uses a typical memoization approach to avoid
returning to previously-visited states and rewinds when find-
ing these states, eliminating the previously chosen action
from consideration by the planner. If the planner eliminates
all of the pruned actions, it will fall back on evaluating
and choosing actions beyond the pruned set. This approach
means the planner will find a solution should one exist, even
if the heuristic returns a set of actions that can’t be used to
reach the goal, as it will eventually rewind enough to elimi-
nate all pruned actions and move toward the solution.

When the planner invokes the heuristic, it receives the
steps in the relaxed plan (where the count of these steps are
an approximation of the distance to goal) as well as a value
indicating how well the relaxed plan satisfied playstyles. The
planner’s first priority is to choose the lowest estimated num-
ber of steps to goal, as the heuristic is already trying to make
these steps conform to the playstyle information. However,
if multiple potential next steps in the planner are evaluated
with same-length relaxed plans by the heuristic, the planner
will choose the step that had a higher playstyle value in its
heuristic evaluation.

Consider a case where the planner is considering adding
the steps s1, s2, and s3 to the solution plan and the heuris-
tic returns (0.1, {a1, a2}) for s1, (0.2, {a3, a4, a5}) for s2,
and (0.15, {a6, a7}) for s3. The planner will disregard s2 as
it returned more actions (3) than the other options (2), indi-
cating a longer distance to goal. For s1 and s3, it will use
the highest playstyle evaluation to break the tie, so s3 will
be chosen as the step to add to the plan as its playstyle eval-
uation was 0.15 compared to s1’s evaluation of 0.1. In this
way, solution plans still conform as closely as possible to
playstyle even when multiple identical-length paths to goal
exist.

The formal definition of the planning algorithm is avail-
able in the appendix.

Heuristic
The heuristic controls what actions the planner chooses first
to add to the solution plan and sets powerful constraints in
the form of action pruning on how the planner should pro-
ceed. The heuristic is where the playstyle information in-
cluded in the problem definition is incorporated. As men-
tioned before, this is based on RPGPREF, a preference-
based heuristic that uses a relaxed plan graph (RPG) to re-
turn collections of actions that indicate distance to goal (the
count of actions) as well as actions which are likely to lead to
the goal which also conform to an agent’s preferences. Be-
cause MULTISTYLE uses distinct playstyles for each agent,
the heuristic needs to incorporate each agent’s preferences

when building the relaxed plan graph. This makes a central-
ized planning approach very powerful, as the heuristic can
consider all agents’ preferences simultaneously when deter-
mining the set of actions to return.

In order to run the heuristic, the heuristic needs to be pro-
vided with sufficient information to estimate a path to goal.
We call this set of information the Evaluation Information.

Definition 4 (Evaluation Information) The Evaluation In-
formation is a tuple ⟨N,A,G,L, f⟩ where N is the world
state to be evaluated, A is the set of all actions in the do-
main, G is the goal state, L is the set of playstyle values,
and f is a positive integer denoting how far past the fixed
point the RPG should be expanded.

While N , A, and G are required elements for construct-
ing a relaxed plan graph and L is necessary to incorporate
playstyle, f is unique to our heuristic. As the heuristic is not
intended to attempt to return minimal sets of actions to ap-
proach the goal, it needs to consider more possible causally-
linked chains of actions than a typical RPG heuristic. The
addition of f in the Evaluation Information allows us to
scale the amount of additional paths to goal the heuristic can
consider to create a relaxed plan. This results in an addition
of f − 1 layers past the typical fixed point in RPG gener-
ation. Without this extension, some paths to reach the goal
may not be considered, and as f gets bigger the heuristic
is allowed to consider longer and longer paths to reach the
goal. See the appendix for a further explanation and small
example of f ’s purpose in the heuristic.

The heuristic algorithm for constructing the relaxed plan
graph is available in Algorithm 1. The relaxed plan graph ex-
traction which creates a relaxed plan from the relaxed plan
graph is identical to that of RPGPREF (Lang and Young
2022).

Proposition Preferences
Proposition preferences (what an agent prefers to be true or
false in the world state) are factored into the relaxed plan
graph as an average over all agents’ preferences for each
proposition applied to the values of the effects of an action.
While PDDL3’s proposition preferences (Gerevini and Long
2005) can have additional constraints that specify the dura-
tion propositions must hold to satisfy preferences (e.g. al-
ways or sometime), MULTISTYLE instead uses proposition
preferences as a means of biasing the heuristic toward ac-
tions that have effects containing preferred propositions and
away from actions that negate preferred propositions.

An agent ϕ holds a preference value for every atom in
the domain {∀p ∈ P, (p → pv) ∈ Lϕ}. The effect value
of each proposition in the heuristic’s RPG is composed of
all agents’ values for p:

⋃n
i=1 Li(p). This value is extracted

for each effect in line 20 of Algorithm 1. These values are
then averaged with all other effects in line 22. As with RPG-
PREF, during the calculation of the RPG this effect value is
averaged with the precondition values and action values to
make an overall action value which is set in the action layer
(line 23) and also set on the effects in the next proposition
layer (line 29 if the effect is not already in the layer or 31 if
the new effect value is higher than the existing effect value).

100

Algorithm 1: Expanding the relaxed planning graph while
adding playstyle metadata.
Let:lc(K) return the max index of the layers in K.
Let:(k → v) be an entry in a dictionary K where k is a
key, v is a value, K(k) refers to v, and in(k,K) is a boolean
function that is true just when the key k exists in K.
Input:Evaluation information ⟨N,A,G,L, f⟩
Output:Planning graph K with playstyle metadata

Create graph K
For initial proposition layer P0 in graph K,

create proposition layer dictionary KP0

Fill KP0 such that ∀n ∈ N, (n → 0) ∈ KP0

5: i = 0
while lc(K) < f ∨ [∃p|in(p,Kpi)∧¬in(p,KPi−f)] do

i++
Create layer dictionaries KAi and KPi in K
Fill KPi such that ∀p ∈ KPi−1, (p → 0) ∈ KPi

10: for all a ∈ A do
Let κ be a set of keys for the dictionary KPi

if PRE(a) ⊆ κ then
P = {}
for all p ∈ PRE(a) do

15: P = P ∪KPi−1(p)
end for
pπ = P
E = {}
for all e ∈ EFF(a) do

20: E = E ∪
⋃n

i=1 Li(e)
end for
eπ = E
KAi = KAi ∪ (a → {pπ, eπ,Laϕ

(a)})
for all p ∈ PRE(a) do

25: Create edge from a in KAi to p in KPi−1

end for
for all e ∈ EFF(a) do

if ∄ev|(e → ev) ∈ KPi then
KPi = KPi ∪ (e → av)

30: else if av > KPi(e) then
KPi(e) = av

end if
Create edge from a in KAi to e in KPi

end for
35: end if

end for
end while
if G ̸⊆ KPi return failure
return K

For a group of agents with distinct proposition prefer-
ences, this means the heuristic will prefer neutral actions
whose effects average to the highest overall preference value
while it avoids neutral actions whose effects average to the
lowest overall preference value. In cases where an action’s
effects are negative but the preference for the action itself
is positive, action preference and proposition preference are
weighted equally so the average of the two determines how
strongly the action is preferred or avoided.

Action Preferences
When the heuristic is evaluating potential actions within
the RPG, it only evaluates the preference of the agent
who is the executor of the action, not the preference of
any other agents. In other words, for an action a =
⟨ϕ, PRE(a), ADD(a), DEL(a)⟩, the value of action a in
agent ϕ’s playstyle information is Lϕ(a) which is used as
the preference value of that action within the heuristic. In
Algorithm 1, line 23 extracts the executing agent’s action
preference which is incorporated in the overall average for
the instance of the action in the RPG. In this way, an agent’s
actions preferences determine what that agent tends to do
and the agent isn’t directly influenced by other agents’ ac-
tion preferences. This approach does not allow for agents to
have preferences about other agent’s actions (e.g. agent ϕ1

can’t prefer that ϕ2 doesn’t fight agent ϕ1’s favorite NPC),
nor does it allow for joint actions.

Characterization of Expressivity through
Example Playthroughs

In order to illustrate the expressivity of this planner, we in-
vented a specific multi-agent planning problem. The prob-
lem was constructed to address requirements for the planner
(i.e., requirements 1 and 2 below), to demonstrate diversity
and expressivity of solution plans (3 and 4), and to improve
the clarity of the features we describe in the generated solu-
tion plans (5):

1. Multiple players should be present
2. All players should share the same goal
3. There should be a large variety of different actions avail-

able for players to progress toward the goal
4. The minimal length plan to solve the problem should be

fairly long
5. Solutions should contain minimal looping and duplicate

actions across characters

The premise of the resulting planning problem is a game
where three players (named Red, Green, and Blue) awaken
as guardians of a fantasy archipelago under threat by a group
of ritualists attempting to activate a monolith to cause an
apocalypse. The game occurs over three islands where the
players progress from island to island by fulfilling certain
conditions. For example, on the first island, the players must
take a boat from a camp of hostile soldiers. In order to do
so, they must either fight the hostile soldiers, requiring them
to mine iron, chop trees for wood, and craft swords; or they
can sneak past the hostile soldiers, requiring them to solve a
puzzle, gather a magical chameleon herb, craft a salve, and
camouflage themselves. On the second island, the players
must convince a goblin to tell them which island the mono-
lith is on. Upon reaching the third island, the players must
disable or destroy the monolith to complete their objective
before heading back home.

The domain definition contains 28 objects and 30 actions.
A complete description of the domain can be found online1.

1https://zulunko.github.io/research/conference/multistyle.html

101

Figure 1: A simple illustration of the actions taken in Playthrough 2. Colored pluses indicate a preference toward the below
action, black equals indicate no character has a preference for the action, and the numbers below indicate the step order in the
playthrough. Steps 12, 19, and 33 (denoted with an asterisk) are transition actions that simultaneously move every character
from one island to the next (step 33 immediately satisfies the goal condition).

Playthrough 1: No Playstyles
A run of the planner without playstyle information results in
a fairly expected outcome. The players for each action are
not considered, so Red performs the majority of the actions.
He mines iron, chops wood, crafts a sword, and attacks the
camp on the first island, allowing the team to proceed to
the second island. On the second island, Red fights the ban-
dits with his sword, takes their coin, and pays a goblin to
tell him where the monolith is. The team proceeds to the
third and final island where Blue solves a puzzle to learn
how to disable the monolith, then Red fights the ritualists
with his sword and disables the monolith before the team
returns back home, job complete. While even a simple me-
diator could be used to prevent Red from performing every
action, the planner wouldn’t deviate from the path taken to
solve the planning problem, as the steps listed above are the
shortest path from the initial state to the goal.

Playthrough 2: Harvester, Crafter, Tactician
For the second playthrough, we added the following prefer-
ences: Green likes gathering, chopping wood, and mining.
Blue likes crafting (there are a number of ”craft” related ac-
tions in the domain). Red does not like fighting but likes
solving puzzles, being sneaky, and putting people to sleep.
For all positive preferences av = 1 and for the negative pref-
erence av = −1.

In this playthrough, the plan gets significantly longer.
On the first island, Green mines stone, providing resources

for Blue to craft a mortar and pestle. Green chops wood,
then Red solves a puzzle to reveal the chameleon herb
which Green gathers. Green then mines Iron. Blue crafts the
chameleon salve in the mortar and pestle and also crafts a
sword. Red equips the chameleon salve and uses it to sneak
by the camp. Blue captains the boat to the second island.
There, Green chops wood and gathers vines so Blue can
craft rope and build a wood house. Blue gives this house
as a gift to the goblin in exchange for information about
the location of the monolith. Red captains the boat to the
third island where Green gathers sleep herb and mines coal.
Red solves the puzzle to learn how to disable the monolith.
Green gathers sticks. Blue crafts a firesuit out of sticks and
coal which Red then equips. Red uses the disguise to sneak
past fire elementals to find their closely-guarded firesprites.
Green gathers the firesprites and Blue crafts sleep bombs us-
ing the herbs and the firesprites. Red equips the sleep bombs
and uses them to put the ritualists to sleep, after which Blue
disables the monolith and Red captains the boat back home,
completing the playthrough. Figure 1 is a simple illustration
of the actions in the playthrough organized by the executing
player.

This second playthrough is far longer (though is not the
longest possible playthrough) because it conforms to the
given playstyles for the three players. Additionally, the sec-
ond playthrough clearly shows the identity of each player as
they were defined; Green performs harvesting actions when-
ever possible, while Blue crafts, Red sneaks, and the player
for unpreferred actions is chosen arbitrarily (e.g. captain-

102

Playthru Steps Time # Nodes f Playstyle
1 17 4.81 s 29 1 0
2 33 12.22 s 69 4 0.667
3 32 11.98 s 74 4 0.244

Table 1: Statistics for each playthrough’s solution. # Nodes
refers to the number of nodes evaluated by the heuristic.
Playstyle is the average playstyle value of the steps in the
final plan.

ing the boat). None of these playstyle preferences are hard
constraints either; if all players dislike a specific action but
that action is required to reach the goal, the system will still
choose a player to perform the action, as the planner is de-
signed with the assumption that players will attempt to reach
the goal even if they don’t prefer some actions they neces-
sarily must perform to get there.

Playthrough 3: Tactician, Fighter, Helper
For the third playthrough, we chose opposing preferences
within our domain. Red remained as-is, preferring to sneak
around, solve puzzles, and put people to sleep. Blue, how-
ever, wanted to fight and blow things up. All of these prefer-
ences were av = 1. Green just wanted to help out as best it
could, so Green’s preference set was a slight preference for
anything (av = 0.1) to prioritize Green for the actions Red
and Blue did not have positive preferences for.

In this playthrough, Red and Blue alternate doing the ob-
jectives while Green focuses on providing them with the
necessary equipment. In the first island, Red first solves the
puzzle to unveil the chameleon herb. Green mines stone and
gathers the chameleon herb before crafting a mortar and
pestle and a chameleon salve. Green then chops wood and
mines iron to craft a sword. Red equips the chameleon salve
and uses it to sneak by the camp to get the soldiers’ boat and
Green takes the helm. Blue equips the sword Green crafted
and the group moves to the second island.

In the second island, Green gathers flint and chops wood
to craft a torch which Blue then equips. Blue uses this torch
to threaten the goblin who surrenders the information about
the location of the monolith. Green then captains the boat to
the third island.

On the third island, Blue fights fire elementals to find the
firesprites which Green then gathers. Green mines stone and
then uses it with the firesprites to craft demolition bombs.
Green then gathers sleep herbs and crafts sleep bombs. Red
equips the sleep bombs and sleeps the ritualists, then Blue
equips the demolition bombs and blows up the monolith.
Green captains the boat back home.

On the first island, Red got to do what it wanted while
Blue did practically nothing aside from equipping a sword.
On the second island, Blue gets to threaten the goblin but
Red does nothing. On the third island, both Blue and Red
get to satisfy their playstyles to some extent: Blue fights ele-
mentals and blows up the monolith and Red sleep bombs the
ritualists. In all islands, Green performs any actions needed
to allow Red and Blue to perform their actions and captains
the boat when the group is moving between islands.

Additional Statistics
Table 1 shows data about the performance of the planner
for each playthrough. The preference data clearly causes
the planner to take longer to complete, but this extra time
is explained by the significantly longer solution plans. This
higher step count is not only expected but desired for the
system’s output (as the purpose of the planner is to diverge
from shortest-length solutions by prioritizing playstyle), so
we consider the additional time needed to calculate the solu-
tion plan to be acceptable, particularly as there is no current
plan to incorporate this in a system that would rely on solu-
tion plans being generated under time constraints. The nodes
evaluated may seem fairly low, but this is a product of the
action pruning used by the system: since the previous step
provides a list of helpful actions, the heuristic is frequently
only evaluating two or three actions for each step past the
first.

f = 1 is the default f value for a planner finding the short-
est plan and extending f beyond 1 in Playthrough 1 results
in the exact same solution being generated in an increased
time. f = 4 is sufficient to include all possible paths to goal
in this example domain and reducing f below 4 does result
in different solution plans for Playthroughs 2 and 3. For ex-
ample, if f is set to 1, the steps through the third island in
Playthroughs 2 and 3 match Playthrough 1 as Playthrough
1 takes the shortest path through the third island (though
different characters execute the actions as determined by
playstyle).

The playstyle values have to be understood in the con-
text of the playstyle sets provided for each playthrough. In
both Playthrough 2 and 3, the planner returned the solu-
tion plan with the maximum possible average playstyle in
the domain given the playstyle sets being used. Because
the players in Playthrough 2 had strong and significantly
different playstyles, the overall average value was high. In
Playthrough 3, Red and Blue had strong playstyles that con-
flicted somewhat and prevented them from working together
while Green had very slight playstyle values, so the resulting
playstyle average was lower.

Discussion and Future Work
Our intent in developing this planner is to eventually vi-
sualize the output for game level designers to help illumi-
nate how teams of players may play through their levels.
There are some possible inferences a designer might make
about their game levels when given information from MUL-
TISTYLE. For example, in the second playthrough illus-
trated in Figure 1, the Red player does not have any positive
playstyle actions to perform in the second island. A designer
could possibly see this as a flaw in their level and add some-
thing that gives a Red-style player something to do in the
second island. In the third playthrough, the designer may
want to add to the domain to enable both Red (the Tacti-
cian) and Blue (the Fighter) to act in their preferred ways
on each island, as those two agents don’t get to satisfy their
playstyle on each island and the playstyle average value is
low as a result. In all playthroughs, there are fewer actions
in the second island than the other islands which may be de-

103

sirable or undesirable to a designer and could prompt them
to improve their level.

If a designer viewed many playthroughs, they could iden-
tify places in the level that players will likely never access
or paths the players seem to always take, allowing them to
modify the domain accordingly. For example, there are ban-
dits on the second island that a player can fight to find gold
coins which can be gathered to pay the goblin for informa-
tion containing the location of the monolith. This path was
used Playthrough 1 (no playstyle). If an analysis showed a
designer that few to no playthroughs contained that path,
they could change the path to be more appealing or elim-
inate it entirely. There are many potential insights that de-
signers could glean from the output of this system if it were
presented in an understandable way.

We see four primary areas where this work can be ex-
tended. First, we would like to incorporate the system as a
level design tool in an AI-assisted game level editor (simi-
lar in implementation to other AI-assisted level design tools
like Tanagra (Smith, Whitehead, and Mateas 2010), work
related to Procedural Personas (Liapis et al. 2015), or the
AI playtesting visualization work by Agarwal et al. (Agar-
wal et al. 2020)). Instead of directly providing suggestions
for how a level designer might change their levels, the tool
would provide designers with an analysis about how their
games may be played. While a designer may be able to pre-
dict what one group of players will do, it may be very hard
for them to directly compare what they believe many differ-
ent groups of players would do in their levels. Additionally,
the less linear a game level becomes, the harder it gets to
predict how different types of players will experience each
level. Ideally, our system would help alleviate this problem
by providing the designer with additional information which
they can then use to make more informed decisions about
modifying their levels. This future work is UI-focused, as
it requires designers to be presented with multiple different
playthroughs at once so they can compare and understand
them within a level editing environment.

The second area of future work involves deriving
playstyle values from, for example, data mining real play-
ers. Given a successful game or game series, a designer may
be tasked with making new levels for sequels or expansions.
The designer may already have a wealth of player data avail-
able to use but may not have an easy way of translating that
player data to distinct playstyles for our system. Clustering
players into types would allow a designer to more easily un-
derstand what sort of players play their games. This data
could be directly given to the planner as a playstyle set, al-
lowing the planner to automatically provide representative
playthroughs without any manual playstyle definition by the
designer. To aid in this effort, the playthroughs generated by
MULTISTYLE could be tested against real players in a va-
riety of domains. While real players are unlikely to behave
exactly as generated in the planner’s solution plans, proving
that MULTISTYLE has some degree of accuracy in predict-
ing real players would be valuable.

Third, MULTISTYLE assumes that all players have com-
plete knowledge of the domain (and thereby the freedom to
choose exactly what they want to do to complete the goal).

This is unrealistic, as certainly the first time a player begins a
game level they may not be able to immediately understand
the sequences of actions available that they can take to reach
the goal. One avenue of future work involves incorporating
exploratory behavior to help understand how players with
no knowledge of a game level might approach completing a
level given that each player has a distinct playstyle.

Finally, we will look to extend the MULTISTYLE planner
to address the generation of multi-character narrative plans.
For the field of narrative planning, approaches like MULTI-
STYLE where agents can have distinct preferences about ac-
tions could result in more believable characters. While some
narrative planners have already incorporated some character
traits to express character personality (Bahamón and Young
2017; Shirvani, Ware, and Baker 2022), the character be-
havior has been based on the impact of their actions, not
on whether the character enjoys performing the action itself.
Because real people have certain activities that they enjoy
more than others, one could reasonably assume that incorpo-
rating action preferences in a narrative planner would result
in characters who seem more humanlike.

Conclusion
In this paper, we presented a preference-based multi-agent
planner named MULTISTYLE. This planner is capable of
generating solution plans that express agent individuality
by incorporating agent-specific action and proposition pref-
erences. These preferences, collectively referred to as a
playstyle, are used by the heuristic to guide the planner to-
ward solution plans that contain actions and world states
that match each agent’s playstyle. We included an exam-
ple domain and multiple playthroughs within that domain to
present the variety of plans that could be produced by solely
varying the preference set for agents. These playthroughs
clearly show that MULTISTYLE disregards shortest-path so-
lutions in favor of those that conform to defined playstyles
for each agent within the domain.

While MULTISTYLE sits adjacent to the fields of
preference-based planning, multi-agent planning, and nar-
rative planning, it falls in an unexplored area between the
three. Preference-based multi-agent planners are an unrep-
resented class of algorithms in research and, while narrative
planners tend to differentiate characters by having them pur-
sue different goals, no narrative planners directly incorpo-
rate characters’ action preferences. The increased expressive
range available to MULTISTYLE sets the stage for the devel-
opment of tools that allow designers to easily understand
how teams of players may play through their levels even
when each player within the team has a distinct playstyle.

A Heuristic’s f Value
The value f is important for allowing the heuristic to find
longer action chains that lead to the goal. This increased ca-
pability is beneficial in that it could help agents better ex-
press their playstyles.

As a brief example of why f allows for these longer ac-
tion chains, if the action sequence A,B,C results in a state
that allows the agent to perform the action G to complete

104

Algorithm 2: MULTISTYLE’s planning algorithm.
Input:A PMA-STRIPS problem ⟨P, I,G,Φ, A,L, f⟩
Output:A solution plan S

S = {} // Solution plan
N = {I} // World states (memoization)
R = {} // Action pruning lists
while G ⊈ N|N | do

5: // Memoization:
if N|N | ∈ {N1, N2, ..., N|N |−1} as Nx then

Rx−1 = Rx−1 \ Sx

N = {N1, N2, ..., Nx}
R = {R1, R2, ..., Rx−1}

10: S = {S1, S2, ..., Sx−1}
end if
E = {} // Executable actions
if R|R| ̸= ∅ then

for all a ∈ R|R| do
15: if PRE(a) ∈ N|N | then

E = E ∪ a
end if

end for
else

20: for all a ∈ A do
if PRE(a) ∈ N|N | then

E = E ∪ a
end if

end for
25: end if

if |E| = 0 then
R|R| = R|R| \ S|S|
R = R \R|R|
N = N \N|N |

30: S = S \ S|S|
continue

end if
vb = −1
Γb = −1

35: ab = null
Cb = {}
for all a ∈ E do

C = {N|N | ∪ ADD(a)} \ DEL(a)
⟨v,Γ⟩ = Heuristic(C,A,G,L, f)

40: if vb = −1 ∨ v < vb ∨ (v = vb ∧ Γ > Γb) then
vb = v
Γb = Γ
ab = a
Cb = C

45: end if
end for
R = R ∪ Γb

N = N ∪ Cb

S = S ∪ ab
50: end while

return S

the goal, a valid path to reach the goal is A,B,C,G. How-
ever, if the action sequence D,E results in the exact same
world state as A,B,C, expanding only to the fixed point
will result in a relaxed plan graph of three action layers: the
first with A,D, the second with A,D,B,E, and the third
with A,D,B,E,C,G. Because C has the same effects on
the world as E, the third proposition layer (after the third ac-
tion layer) will be identical to the second proposition layer,
meaning the RPG has hit its fixed point. If we assume we’ve
stopped at the fixed point, when extracting the relaxed plan
we will select G from the third layer, look for lower-layer
actions that provide G’s preconditions and select E from the
second layer (because C does not exist in the second layer),
and then select D from the first layer. In order to consider
the chain A,B,C,G, the RPG must be expanded one layer
further so G exists at least one layer above C.

In typical RPG construction, preventing longer action
chains is intended and desirable behavior: the heuristic is
more efficient if it has fewer layers and doesn’t need to con-
sider all paths to the goal. In our heuristic, however, we
want to consider potential paths which are lengthier than the
shortest-length path, so f determines how long those poten-
tial paths can be. Reducing f makes the heuristic finish its
evaluation faster but possibly disregard longer action chains
and produce shorter solutions, while increasing f makes
the heuristic take longer but possibly include longer action
chains and produce longer solutions. f should therefore be
tuned both based on the desired playstyle-adherence of the
user as well as the length of action chains within the domain.

B Planner Algorithm
A full planner algorithm can be found in Algorithm 2. S, N ,
and R are ordered and are the solution plan steps, the world
state at each step (used for memoization), and the pruned
action list (used for action pruning). Because N contains the
initial state and a state after every step, it has a length of one
more than the other sets. Note that Rx contains the pruned
action list to be considered for the step after Sx; e.g. R1

limits the planner’s evaluation for which step to choose as
S2.

References
Agarwal, S.; Herrmann, C.; Wallner, G.; and Beck, F.
2020. Visualizing AI Playtesting Data of 2D Side-scrolling
Games. In 2020 IEEE Conference on Games (CoG), 572–
575.
Bahamón, J.; and Young, R. 2017. An Empirical Evalua-
tion of a Generative Method for the Expression of Personal-
ity Traits through Action Choice. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 13(1).
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence, 173(5): 593–618.
Advances in Automated Plan Generation.
Bartle, R. 1996. Hearts, Clubs, Diamonds, Spades: Players
Who Suit MUDs. https://mud.co.uk/richard/hcds.htm. Ac-
cessed: 2023-08-24.

105

Bateman, C.; Lowenhaupt, R.; and Nacke, L. 2011. Player
Typology in Theory and Practice. In DiGRA ཇ -
Proceedings of the 2011 DiGRA International Conference:
Think Design Play. DiGRA/Utrecht School of the Arts.
ISBN ISSN 2342-9666.
Brafman, R. I.; and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198: 52–71.
Coles, A.; and Coles, A. 2011. LPRPG-P: Relaxed
plan heuristics for planning with preferences. In Twenty-
First International Conference on Automated Planning and
Scheduling.
Gerevini, A.; and Long, D. 2005. Plan Constraints and Pref-
erences in PDDL3 The Language of the Fifth International
Planning Competition. ICAPS 2006.
Gerevini, A. E.; Lipovetzky, N.; Percassi, F.; Saetti, A.; and
Serina, I. 2019. Best-first width search for multi agent
privacy-preserving planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 29, 163–171.
Hamari, J.; and Tuunanen, J. 2014. Player Types: A Meta-
synthesis. Transactions of the Digital Games Research As-
sociation, 1: 29–53.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Kallio, K. P.; Mäyrä, F.; and Kaipainen, K. 2011. At Least
Nine Ways to Play: Approaching Gamer Mentalities. Games
and Culture, 6(4): 327–353.
Lang, E. W.; and Young, R. M. 2022. RPGPref: A Planning
Heuristic That Uses Playstyle Preferences to Model Player
Action and Choice. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 18, 129–136.
Laws, R. 2002. Robin’s Laws of Good Game Mastering.
Steve Jackson Games.
Liapis, A.; Holmgård, C.; Yannakakis, G. N.; and Togelius,
J. 2015. Procedural personas as critics for dungeon gen-
eration. In Applications of Evolutionary Computation:
18th European Conference, EvoApplications 2015, Copen-
hagen, Denmark, April 8-10, 2015, Proceedings 18, 331–
343. Springer.
Maliah, S.; Shani, G.; and Stern, R. 2017. Collaborative pri-
vacy preserving multi-agent planning: Planners and heuris-
tics. Autonomous agents and multi-agent systems, 31: 493–
530.
Mora, A.; Tondello, G. F.; Calvet, L.; González, C.; Arnedo-
Moreno, J.; and Nacke, L. E. 2019. The Quest for a Better
Tailoring of Gameful Design: An Analysis of Player Type
Preferences. In Proceedings of the XX International Con-
ference on Human Computer Interaction, Interacción ’19.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450371766.
Nissim, R.; and Brafman, R. 2014. Distributed heuristic for-
ward search for multi-agent planning. Journal of Artificial
Intelligence Research, 51: 293–332.

Riedl, M. O.; and Young, R. M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial Intelli-
gence Research, 39: 217–268.
Shirvani, A.; Ware, S. G.; and Baker, L. J. 2022. Personal-
ity and Emotion in Strong-Story Narrative Planning. IEEE
Transactions on Games.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra: A
Mixed-Initiative Level Design Tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, FDG ’10, 209–216. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781605589374.
Teutenberg, J.; and Porteous, J. 2013. Efficient intent-based
narrative generation using multiple planning agents. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 603–610.
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M.
2017. Cooperative Multi-Agent Planning: A Survey. ACM
Comput. Surv., 50(6).
Torreno, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
Distributed cooperative multi-agent planning. Applied Intel-
ligence, 41: 606–626.
Tseng, F.-C. 2011. Segmenting online gamers by motiva-
tion. Expert Systems with Applications, 38(6): 7693–7697.
Vahlo, J.; Kaakinen, J. K.; Holm, S. K.; and Koponen,
A. 2017. Digital Game Dynamics Preferences and Player
Types. Journal of Computer-Mediated Communication,
22(2): 88–103.
Ware, S. G.; and Siler, C. 2021. Sabre: A Narrative Planner
Supporting Intention and Deep Theory of Mind. Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 17(1): 99–106.
Ware, S. G.; and Young, R. M. 2015. Intentionality and con-
flict in The Best Laid Plans interactive narrative virtual envi-
ronment. IEEE Transactions on Computational Intelligence
and AI in Games, 8(4): 402–411.
Ye, D.; Zhu, T.; Shen, S.; Zhou, W.; and Philip, S. Y. 2020.
Differentially private multi-agent planning for logistic-like
problems. IEEE transactions on dependable and secure
computing, 19(2): 1212–1226.
Young, R. M. 2017. Sketching a Generative Model of In-
tention Management for Characters in Stories: Adding In-
tention Management to a Belief-Driven Story Planning Al-
gorithm. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 13(1).

106

